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SUMMARY

The implementation of clinical-decision support
algorithms for medical imaging faces challenges
with reliability and interpretability. Here, we estab-
lish a diagnostic tool based on a deep-learning
framework for the screening of patients with
common treatable blinding retinal diseases. Our
framework utilizes transfer learning, which trains
a neural network with a fraction of the data of
conventional approaches. Applying this approach
to a dataset of optical coherence tomography
images, we demonstrate performance comparable
to that of human experts in classifying age-
related macular degeneration and diabetic macu-
lar edema. We also provide a more transparent
and interpretable diagnosis by highlighting the
regions recognized by the neural network. We
further demonstrate the general applicability of
our AI system for diagnosis of pediatric pneu-
monia using chest X-ray images. This tool may
ultimately aid in expediting the diagnosis and
referral of these treatable conditions, thereby
facilitating earlier treatment, resulting in improved
clinical outcomes.
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INTRODUCTION

Artificial intelligence (AI) has the potential to revolutionize dis-

ease diagnosis and management by performing classification

difficult for human experts and by rapidly reviewing immense

amounts of images. Despite its potential, clinical interpretability

and feasible preparation of AI remains challenging.

The traditional algorithmic approach to image analysis for

classification previously relied on (1) handcrafted object seg-

mentation, followed by (2) identification of each segmented

object using statistical classifiers or shallow neural computa-

tional machine-learning classifiers designed specifically for

each class of objects, and finally (3) classification of the image

(Goldbaum et al., 1996). Creating and refining multiple classifiers

required many skilled people and much time and was computa-

tionally expensive (Chaudhuri et al., 1989; Hoover and Gold-

baum, 2003; Hoover et al., 2000).

The development of convolutional neural network layers has

allowed for significant gains in the ability to classify images

and detect objects in a picture (Krizhevsky et al., 2017; Zeiler

and Fergus, 2014). These are multiple processing layers to

which image analysis filters, or convolutions, are applied. The

abstracted representation of images within each layer is con-

structed by systematically convolving multiple filters across the

image, producing a feature map that is used as input to the

following layer. This architecture makes it possible to process

images in the form of pixels as input and to give the desired
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Figure 1. Schematic of a Convolutional Neu-

ral Network

Schematic depicting how a convolutional neural

network trained on the ImageNet dataset of 1,000

categories can be adapted to significantly increase

the accuracy and shorten the training duration of a

network trained on a novel dataset of OCT images.

The locally connected (convolutional) layers are

frozen and transferred into a new network, while

the final, fully connected layers are recreated and

retrained from random initialization on top of the

transferred layers.
classification as output. The image-to-classification approach

in one classifier replaces the multiple steps of previous image

analysis methods.

One method of addressing a lack of data in a given domain is

to leverage data from a similar domain, a technique known as

transfer learning. Transfer learning has proven to be a highly

effective technique, particularly when faced with domains with

limited data (Donahue et al., 2013; Razavian et al., 2014; Yosinski

et al., 2014). Rather than training a completely blank network, by

using a feed-forward approach to fix the weights in the lower

levels already optimized to recognize the structures found in

images in general and retraining the weights of the upper levels

with back propagation, the model can recognize the distinguish-

ing features of a specific category of images, such as images

of the eye, much faster and with significantly fewer training ex-

amples and less computational power (Figure 1).

In this study, we sought to develop an effective transfer

learning algorithm to process medical images to provide an ac-

curate and timely diagnosis of key pathology in each image. The

primary illustration of this technique involved optical coherence
Ce
tomography (OCT) images of the retina,

but the algorithm was also tested in a

cohort of pediatric chest radiographs to

validate the generalizability of this tech-

nique across multiple imaging modalities.

RESULTS

The primary application of our transfer

learning algorithm was in the diagnosis

of retinal OCT images. Spectral-domain

OCT uses light to capture high-resolution

in vivo optical cross sections of the retina

that can be assembled into three-dimen-

sional-volume images of living retinal

tissue. It has become one of the most

commonly performed medical imaging

procedures, with approximately 30million

OCT scans performed each year world-

wide (Swanson and Fujimoto, 2017).

OCT imaging is now a standard of care

for guiding the diagnosis and treatment

of some of the leading causes of

blindness worldwide: age-related macu-
lar degeneration (AMD) and diabetic macular edema. Almost

10 million individuals suffer from AMD in the United States, and

each year, more than 200,000 people develop choroidal neovas-

cularization, a severe blinding form of advanced AMD (Ferrara,

2010; Friedman et al., 2004; Wong et al., 2014). In addition,

nearly 750,000 individuals aged 40 or older suffer from diabetic

macular edema (Varma et al., 2014), a vision-threatening form

of diabetic retinopathy that involves the accumulation of fluid

in the central retina. The prevalence of these diseases will likely

increase even further over time due to the aging population and

the global diabetes epidemic. Fortunately, the advent and wide-

spread utilization of anti-vascular endothelial growth factor (anti-

VEGF)medications has revolutionized the treatment of exudative

retinal diseases (Kaiser et al., 2007; Ferrara, 2010), allowing

patients to retain useful vision and quality of life. OCT is critical

to guiding the administration of anti-VEGF therapy by providing

a clear cross-sectional representation of the retinal pathology

in these conditions (Figure 2A), allowing visualization of individ-

ual retinal layers, which is impossible with clinical examination

by the human eye or by color fundus photography.
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Figure 2. Representative Optical Coherence Tomography Images and the Workflow Diagram

(A) (Far left) choroidal neovascularization (CNV) with neovascular membrane (white arrowheads) and associated subretinal fluid (arrows). (Middle left) Diabetic

macular edema (DME) with retinal-thickening-associated intraretinal fluid (arrows). (Middle right) Multiple drusen (arrowheads) present in early AMD. (Far right)

Normal retina with preserved foveal contour and absence of any retinal fluid/edema.

(B) Workflow diagram showing overall experimental design describing the flow of optical coherence tomography (OCT) images through the labeling and grading

process followed by creation of the transfer learningmodel, which then underwent training and subsequent testing. The training dataset only included images that

passed sufficient quality and diagnostic standards from the initial collected dataset.

See also Table S1.
Patient and Image Characteristics
We initially obtained 207,130 OCT images. 108,312 images

(37,206 with choroidal neovascularization, 11,349 with diabetic

macular edema, 8,617 with drusen, and 51,140 normal) from

4,686 patients passed initial image quality review and were

used to train the AI system. The model was tested with 1,000

images (250 from each category) from 633 patients. Patient

characteristics for each diagnosis category are listed in

Table S1. After 100 epochs (iterations through the entire data-

set), the training was stopped due to the absence of further
1124 Cell 172, 1122–1131, February 22, 2018
improvement in both accuracy (Figure 3A) and cross-entropy

loss (Figure 3B).

Performance of the Model
We evaluated our AI system in diagnosing the most common

blinding retinal diseases. This AI system categorized images

with choroidal neovascularization and images with diabetic

macular edema as ‘‘urgent referrals.’’ These conditions would

demand relatively urgent referral to an ophthalmologist for

definitive anti-VEGF treatment; if treatment is delayed, there is



Figure 3. Plot Showing Performance in the Training and Validation Datasets Using TensorBoard

Accuracy is plotted against the training step (A), and cross-entropy loss is plotted against the training step (B) during the length of the training of the multi-class

classifier over the course of 10,000 steps. Plots were normalized with a smoothing factor of 0.6 to clearly visualize trends. The validation accuracy and loss show

better performance, since images with more noise and lower quality were also included in the training set to reduce overfitting and help generalization of the

classifier. Training dataset: orange. Validation dataset: blue.

See also Figure S1.
increased risk of bleeding, scarring, or other downstream com-

plications that cause irreversible vision impairment. The system

categorized imageswith drusen, which are lipid deposits present

in the dry form of macular degeneration, as ‘‘routine referrals.’’

Anti-VEGF medications are not indicated for dry macular degen-

eration; therefore, referral to an eye specialist for drusen is

less urgent. Normal images were labeled for ‘‘observation.’’ In

amulti-class comparison between choroidal neovascularization,

diabetic macular edema, drusen, and normal, we achieved an

accuracy of 96.6% (Figure 4), with a sensitivity of 97.8%, a spec-

ificity of 97.4%, and a weighted error of 6.6%. Receiver oper-

ating characteristic (ROC) curves were generated to evaluate

the model’s ability to distinguish urgent referrals (defined as

choroidal neovascularization or diabetic macular edema) from
drusen and normal exams. The area under the ROC curve was

99.9% (Figure 4).

We also trained a ‘‘limited model’’ classifying between the

same four categories but only using 1,000 images randomly

selected from each class during training to compare transfer

learning performance using limited data compared to results

using a large dataset. Using the same testing images, the model

achieved an accuracy of 93.4%, with a sensitivity of 96.6%, a

specificity of 94.0%, and a weighted error of 12.7%. The ROC

curves distinguishing urgent referrals (i.e., distinguishing images

with choroidal neovascularization or diabetic macular edema

from normal images had an area under the curve of 98.8%.

Binary classifierswere also implemented to compare choroidal

neovascularization/diabetic macular edema/drusen from normal
Cell 172, 1122–1131, February 22, 2018 1125



Figure 4. Multi-class Comparison between Choroidal Neovascularization, Diabetic Macular Edema, Drusen, and Normal

(A) Receiver operating characteristic (ROC) curve for ‘‘urgent referrals’’ (CNV and DME detection) with human expert performance for comparison. The area under

the ROC curve was 99.9%. The zoomed area shows that the most accurate model demonstrates a performance that rivals that of six human experts.

(B) Confusion table of best model’s classification of the validation image set. The model successfully scored all urgent referrals as higher than observation.

(C) Weighted error results based on penalties in Figure S4 depicting neural networks in gold and human experts in blue.

See also Figures S2, S3, and S4 and Table S2.
using the same datasets in order to determine a breakdown

of the model’s performance (Figure S1). The classifier distin-

guishing choroidal neovascularization images from normal im-

ages achieved an accuracy of 100.0%, with a sensitivity of

100.0%and specificity of 100.0%. The area under theROCcurve

was 100.0% (Figure S2A). The classifier distinguishing diabetic

macular edema images from normal images achieved an accu-

racy of 98.2%, with a sensitivity of 96.8% and specificity of

99.6%. The area under the ROC curve was 99.87% (Figure S2B).

The classifier distinguishing drusen images from normal images

achieved an accuracy of 99.0%, with a sensitivity of 98.0%

and specificity of 99.2%. The area under the ROC curve was

99.96% (Figure S2C).

Comparison of the Model with Human Experts
An independent test set of 1,000 images from 633 patients was

used to compare the AI network’s referral decisions with the
1126 Cell 172, 1122–1131, February 22, 2018
decisions made by human experts. Six experts with significant

clinical experience in an academic ophthalmology center were

instructed to make a referral decision on each test patient using

only the patient’s OCT images. Performance on the clinically

most important decision of distinguishing patients needing

urgent referral (those with choroidal neovascularization or dia-

betic macular edema) compared to normal patients is displayed

as a ROC curve, and this performance was comparable between

the AI system and the human experts (Figure 4A).

Having established a standard expert performance evaluation

system, we next compared the potential impact of patient

referral decisions between our network and human experts.

The sensitivities and specificities of the experts were plotted

on the ROC curve of the trained model, and the differences in

diagnostic performance, measured by likelihood ratios, between

the model and the human experts were determined to be

statistically similar within a 95% confidence interval (Figure S3).



However, the pure error rate does not accurately reflect the

impact that a wrong referral decision might have on the outcome

of an individual patient. To illustrate, a false-positive result oc-

curs when a patient is normal or has drusen but is inaccurately

labeled as an urgent referral, and this can cause undue distress

or unnecessary investigation for the patient and place extra bur-

dens on the healthcare system. However, a false-negative result

is far more serious, because in this instance, a patient with

choroidal neovascularization or diabetic macular edema is not

appropriately referred, which could result in irreversible visual

loss. To account for these issues, weighted error scoring was

incorporated during model evaluation and expert testing (Fig-

ure S4A). By assigning these penalty points to each decision

made by the model and the experts, we computed the average

error of each.

The best convolutional neural network model yielded a score

of 6.6% under this weighted error system. The weighted error

of the experts ranged from 0.4% to 10.5%, with a mean

weighted error of 4.8% (Table S2). The exact breakdown of

each expert’s performance regarding the correlation of their

predicted labels with the true labels is depicted as confusion

matrices in Figure S4B. As seen in Figure 4, the best model out-

performed some human experts based on this weighted scale

and on the ROC curve.

Occlusion Testing
We performed an occlusion test on 491 images to identify the

areas contributing most to the neural network’s assignment of

the predicted diagnosis. This testing successfully identified the

region of interest in 94.7%of images that contributed the highest

importance to the deep-learning algorithm (Figure 5A; see also

Figure S5 for additional examples). Drusen were located

correctly through occlusion testing in 100% of all the images,

while choroidal neovascularization yielded an accuracy of

94.0% and diabetic macular edema yielded an accuracy of

91.0% (Table S3). Furthermore, these regions identified by

occlusion testing were also verified by human experts to be

the most clinically significant areas of pathology.

Application of the AI System for Pneumonia Detection
Using Chest X-Ray Images
To investigate the generalizability of our AI system in the diag-

nosis of common diseases, we applied the same transfer

learning framework to the diagnosis of pediatric pneumonia.

According to the World Health Organization (WHO), pneumonia

kills about 2 million children under 5 years old every year and

is consistently estimated as the single leading cause of child-

hood mortality (Rudan et al., 2008), killing more children than

HIV/AIDS, malaria, and measles combined (Adegbola, 2012).

The WHO reports that nearly all cases (95%) of new-onset child-

hood clinical pneumonia occur in developing countries, particu-

larly in Southeast Asia and Africa. Bacterial and viral pathogens

are the two leading causes of pneumonia (Mcluckie, 2009)

but require very different forms of management. Bacterial pneu-

monia requires urgent referral for immediate antibiotic treatment,

while viral pneumonia is treated with supportive care. Therefore,

accurate and timely diagnosis is imperative. One key element of

diagnosis is radiographic data, since chest X-rays are routinely
obtained as standard of care and can help differentiate between

different types of pneumonia (Figure S6). However, rapid radio-

logic interpretation of images is not always available, particularly

in the low-resource settings where childhood pneumonia has the

highest incidence and highest rates of mortality. To this end, we

also investigated the effectiveness of our transfer learning frame-

work in classifying pediatric chest X-rays to detect pneumonia

and furthermore to distinguish viral and bacterial pneumonia to

facilitate rapid referrals for children needing urgent intervention.

We collected and labeled a total of 5,232 chest X-ray images

from children, including 3,883 characterized as depicting pneu-

monia (2,538 bacterial and 1,345 viral) and 1,349 normal, from

a total of 5,856 patients to train the AI system. The model was

then tested with 234 normal images and 390 pneumonia images

(242 bacterial and 148 viral) from 624 patients. After 100 epochs

(iterations through the entire dataset) of the model, the training

was stopped due to the absence of further improvement in

both loss and accuracy (Figures 6A and 6B).

In the comparison of chest X-rays presenting as pneumonia

versus normal, we achieved an accuracy of 92.8%, with a

sensitivity of 93.2% and a specificity of 90.1%. The area under

the ROC curve for detection of pneumonia from normal was

96.8% (Figure 6E). Binary comparison of bacterial and viral

pneumonia resulted in a test accuracy of 90.7%, with a sensi-

tivity of 88.6% and a specificity of 90.9% (Figures 6C and 6D).

The area under the ROC curve for distinguishing bacterial and

viral pneumonia was 94.0% (Figure 6F).

DISCUSSION

In this study, we describe a general AI platform for the diagnosis

and referral of two common causes of severe vision loss: dia-

betic macular edema and choroidal neovascularization seen in

neovascular AMD. By employing a transfer learning algorithm,

our model demonstrated competitive performance of OCT im-

age analysis without the need for a highly specialized deep-

learning machine and without a database of millions of example

images (STAR Methods). Moreover, the model’s performance in

diagnosing retinal OCT imageswas comparable to that of human

experts with significant clinical experience with retinal diseases.

When the model was trained with a much smaller number of

images (about 1,000 from each class), it retained high perfor-

mance in accuracy, sensitivity, specificity, and area under the

ROC curve for achieving the correct diagnosis and referral,

thereby illustrating the power of the transfer learning system to

make highly effective classifications, even with a very limited

training dataset.

Although our AI platform was trained and validated using

the Heidelberg Spectralis imaging system, the Digital Imaging

and Communications in Medicine (DICOM) standards make

the OCT images from different manufacturers (e.g., Zeiss

and Optovue) reasonably consistent. The goal of this preliminary

approach was to develop a system and demonstrate the

soundness of the methods. Future studies could entail the use

of images from different manufacturers in both the training and

testing datasets so that the system will be universally useful.

Moreover, the efficacy of the transfer learning technique for im-

age analysis very likely extends beyond the realm of OCT images
Cell 172, 1122–1131, February 22, 2018 1127



Figure 5. Occlusion Maps and Longitudinal Follow-up OCT Images Comparing Retinal Structural Changes before and after Anti-VEGF

Therapy

(A) Occlusion maps highlighting areas of pathology in diabetic macular edema (left), choroidal neovascularization (middle), and drusen (right). An occlusion map

was generated by convolving an occluding kernel across the input image. The occlusion map is created after prediction by assigning the softmax probability of

the correct label to each occluded area. The occlusionmap can then be superimposed on the input image to highlight the areas themodel considered important in

making its diagnosis.

(B and C) Horizontal cross-section OCT images through the fovea of patients with wet AMD (B) or diabetic retinopathy with macular edema (C) before and after

three monthly intravitreal injections of bevacizumab. Both intraretinal and subretinal fluid (white arrows) lessened after treatment. Scar tissue of choroidal

neovascularization remained (arrow heads). All visual accurity (VA) was improved: 20/320 to 20/250, 5 months (patient 1); 20/40 to 20/32, 9 months (patient 2);

20/400 to 20/250, 3 months (patient 3); 20/80 to 20/50, 7 months (patient 4); 20/40 to 20/25; 7 months (patient 5); and 20/32 to 20/25, 7 months (patient 6).

See also Figure S5 and Table S3.
and ophthalmology—in principle, the techniques we have

described here could potentially be employed in a wide range

of medical images across multiple disciplines, and in fact, we

provide a direct illustration of its wide applicability by demon-

strating its efficacy in analysis of chest X-ray images.

Occlusion testing was performed to identify the areas of

greatest importance used by the model in assigning a diagnosis.

The greatest benefit of an occlusion test is that it reveals insights

into the decisions of neural networks, which are infamously

known as ‘‘black boxes’’ with no transparency. Since this test

was performed after training was completed, it demystified the
1128 Cell 172, 1122–1131, February 22, 2018
algorithm without affecting its results. The occlusion test also

confirmed that the network made its decisions using accurate

distinguishing features, which can be shared with a healthcare

professional. All areas containing drusen were recognized

correctly on all images used for testing, while the diabetic mac-

ular edema and choroidal neovascularization occlusion tests oc-

casionally did not present a clear point of interest. This is likely

due to the lesions and fluid pockets of choroidal neovascula-

rization and diabetic macular edema sometimes presenting

much larger than the occlusion window, while drusen tend to

be smaller in size.



Figure 6. Plots Depicting Performance of Pneumonia Diagnosis using Chest X-Ray Images in the Training and Validation Datasets Using

TensorBoard

(A–F) Comparisons were made for pneumonia versus normal (A) with cross-entropy loss plotted against the training step (B), as well as comparisons between

bacterial pneumonia and viral pneumonia (C) and the associated cross-entropy loss (D). Plots were normalized with a smoothing factor of 0.6 in order to clearly

visualize trends. The area under the ROC curve for detecting pneumonia versus normal was 96.8% (E). The area under the ROC curve for detecting bacterial

versus viral pneumonia was 94.0% (F). Training dataset: orange. Validation dataset: blue.

See also Figure S6.
Although transfer learning allows the training of a highly accu-

rate model with a relatively small training dataset, its perfor-

mance would be inferior to that of a model trained from a random

initialization on an extremely large dataset of OCT images, since

even the internal weights can be directly optimized for OCT

feature detection. However, in practice, a new convolutional

neural network trained from random initialization, even with an

unlimited supply of training data, would require weeks to achieve

a good accuracy, whereas the multi-class holdout model imple-

mented using transfer learning finished training and testing on

different data in under 2 hr. Each binary classification and the

limited model converged to a high accuracy in under 30 min.

Since medical images are difficult to collect in the large amounts
necessary to train a blank convolutional neural network, transfer

learning using a pre-trained model trained on millions of various

medical images would likely yield a more accurate model

in much less time when retraining layers for other medical

classifications.

The performance of our model depends highly on the

weights of the pre-trained model. Therefore, the performance

of this model would likely be enhanced when tested on a larger

ImageNet dataset with more advanced deep-learning tech-

niques and architecture. Further, the rapid progression and

development of the field of convolutional neural networks

applied outside of medical imaging would also improve the

performance of our approach.
Cell 172, 1122–1131, February 22, 2018 1129



Finally, as mentioned earlier, we use OCT imaging as a

demonstration of a generalized approach in medical image

interpretation and subsequent decision making. Our framework

effectively identified potential pathology on a tissue map to

make a referral decision with performance comparable to (and

sometimes even better than) human experts, enabling timely

diagnosis of the two most common causes of irreversible severe

vision loss. OCT is particularly useful in the management of

retinal diseases because it has become critical to guiding anti-

VEGF treatment for the intraretinal and/or subretinal fluid seen

in many retinal conditions. This fluid often cannot be clearly visu-

alized by the examiner’s eyes or by color fundus photography. In

addition, the OCT appearance often correlates well with visual

acuity. The presence of fluid is typically associated with worse

visual acuity, which improves once the fluid is resolved with

anti-VEGF treatment (Figure 5B). As a testament to the value of

this imaging modality, treatment decisions for exudative retinal

diseases are now guided byOCT rather than by clinical examina-

tion or fundus photography, making this demonstration of AI-

guided classification of images more clinically relevant than prior

studies that have analyzed retinal fundus photographs, such as

that from Gulshan et al. (2016). Given that OCT imaging has

played such a crucial role in guiding treatment, extending the

application of AI beyond diagnosis or classification of images

and into the realm of making treatment recommendations is a

promising area of future investigation.

Furthermore, our network represents a generalized platform

that can potentially be applied to a wide range ofmedical imaging

techniques (e.g., chest X-ray, MRI, computed tomography) to

make a clinical diagnostic decision. We demonstrated this point

by training our network on a dataset of chest X-ray images of pe-

diatric pneumonia. Chest X-rays present a difficult classification

task due to the relatively large amount of variable objects, specif-

ically the imaged areas outside the lungs that are irrelevant to the

diagnosis of pneumonia. The resulting high-accuracy model sug-

gests that this AI system has the potential to effectively learn from

increasingly complicated imageswith a highdegreeof generaliza-

tion using a relatively small repository of data. By demonstrating

efficacy with multiple imaging modalities and with a wide range

of pathology, this transfer learning framework presents a compel-

ling system for further exploration and analysis in biomedical

imaging and more generalized application to an automated com-

munity-based AI system for the diagnosis and triage of common

human diseases. By providing our data and codes in a publicly

available database, we also hope that other biomedical re-

searchers may use our work as a resource to improve the perfor-

manceof futuremodels andhelpdrive the field forward.Thiscould

facilitate screening programs and create more efficient referral

systems in all of medicine, particularly in remote or low-resource

areas, leading to a broad clinical and public health impact.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

OCT and Chest X-Ray images and codes https://data.mendeley.com/datasets/rscbjbr9sj/2 N/A

Software and Algorithms

TensorFlow https://www.tensorflow.org/ N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and classifiers should be directed to and will be fulfilled by the Lead Contact,

Kang Zhang (kang.zhang@gmail.com). There are no restrictions for use of the materials disclosed.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Images from Human Subjects
Optical coherence tomography (OCT) images (Spectralis OCT, Heidelberg Engineering, Germany) were selected from retrospective

cohorts of adult patients from the Shiley Eye Institute of the University of California San Diego, the California Retinal Research Foun-

dation, Medical Center Ophthalmology Associates, the Shanghai First People’s Hospital, and Beijing Tongren Eye Center between

July 1, 2013 and March 1, 2017. All OCT imaging was performed as part of patients’ routine clinical care. There were no exclusion

criteria based on age, gender, or race. We searched local electronic medical record databases for diagnoses of choroidal neovas-

cularization, diabetic macular edema, drusen and normal to initially assign images. A horizontal foveal cut of OCT scans was down-

loaded with a standard image format according to manufacure’s softwares and instructions. Chest X-ray images (anterior-posterior)

were selected from retrospective cohorts of pediatric patients of one to five years old from Guangzhou Women and Children’s

Medical Center, Guangzhou. All chest X-ray imaging was performed as part of patients’ routine clinical care. Institutional Review

Board (IRB)/Ethics Committee approvals were obtained. The work was conducted in a manner compliant with the United States

Health Insurance Portability and Accountability Act (HIPAA) and was adherent to the tenets of the Declaration of Helsinki.

METHOD DETAILS

OCT examinations were interpreted to confirm a diagnosis, and referral decisions were made thereafter (‘‘urgent referral’’ for diag-

noses of choroidal neovascularization or diabetic macular edema, ‘‘routine referral’’ for drusen, and ‘‘observation only’’ for normal).

The dataset represents the most common medical retina patients presenting and receiving treatment at all participating clinics.

Chest X-ray examinations were interpreted to confirm a diagnosis, and referral decisions were made thereafter (‘‘urgent referral’’

for diagnoses of bacterial pneumonia, ‘‘supportive care’’ for viral pneumonia, and ‘‘observation only’’ for normal).

Image Labeling
Before training, each image went through a tiered grading system consisting of multiple layers of trained graders of increasing exper-

tise for verification and correction of image labels. Each image imported into the database started with a label matching the most

recent diagnosis of the patient. The first tier of graders consisted of undergraduate and medical students who had taken and passed

an OCT interpretation course review. This first tier of graders conducted initial quality control and excluded OCT images containing

severe artifacts or significant image resolution reductions. The second tier of graders consisted of four ophthalmologists who

independently graded each image that had passed the first tier. The presence or absence of choroidal neovascularization (active

or in the form of subretinal fibrosis), macular edema, drusen, and other pathologies visible on the OCT scan were recorded. Finally,

a third tier of two senior independent retinal specialists, eachwith over 20 years of clinical retina experience, verified the true labels for

each image. The dataset selection and stratification process is displayed in a CONSORT-style diagram in Figure 2B. To account for

human error in grading, a validation subset of 993 scans was graded separately by two ophthalmologist graders, with disagreement

in clinical labels arbitrated by a senior retinal specialist.

For the analysis of chest X-ray images, all chest radiographs were initially screened for quality control by removing all low quality or

unreadable scans. The diagnoses for the images were then graded by two expert physicians before being cleared for training the AI

system. In order to account for any grading errors, the evaluation set was also checked by a third expert.

ImageNet www.image-net.org N/A
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Transfer Learning Methods
Using the Tensorflow we adapted an Inception V3 architecture pretrained on the ImageNet dataset (Szegedy et al., 2016). Retraining

consisted of initializing the convolutional layers with loaded pretrained weights and retraining the final, softmax layer to recognize

our classes from scratch. In this study, the convolutional layers were frozen and used as fixed feature extractors. The convolutional

‘‘bottlenecks’’ are the values of each training and testing images after they have passed through the frozen layers of our model and

since the convolutional weights are not updated, these values are initially calculated and stored in order to reduce redundant

processes and speed up training. The newly initialized network, then, takes the image bottlenecks as input and retrains to classify

our specific categories. Attempts at ‘‘fine-tuning’’ the convolutional layers by unfreezing and updating the pretrained weights on

our medical images using backpropagation tended to decrease model performance due to overfitting (Figure 1).

The Inception model was trained on an Ubuntu 16.04 computer with 2 Intel Xeon CPUs, using a NVIDIA GTX 1080 8Gb GPU for

training and testing, with 256Gb available in RAM memory. Training of layers was performed by stochastic gradient descent in

batches of 1,000 images per step using an Adam Optimizer with a learning rate of 0.001. Training on all categories was run for

10,000 steps, or 100 epochs, since training of the final layers will have converged by then for all classes. Holdout method testing

was performed after every step using a test partition containing images from patients independent of the patients represented in

the training partition by passing each image through the network without performing gradient descent and backpropagation, and

the best performing model was kept for analysis.

Expert Comparisons
In order to evaluate our model in the context of clinical experts, a validation set of 1000 images (633 patients), independent of the

patients in the training set, was used to compare our network referral decisions with the decisionsmade by human experts. Weighted

error scoring was used to reflect the fact that a false negative result (failing to refer) is more detrimental than a false positive result

(making a referral when it was not warranted). Using these weighted penalty points, error rates were computed for the model and

for each of the human experts.

Occlusion Test
Similarly to the methods described by Lee et al. and Zeiler and Fergus, an occlusion test was performed to identify the areas

contributing themost to the neural network’s assignment of the predicted diagnosis(Lee et al., 2016; Zeiler and Fergus, 2014). A blank

20x20 pixel box was systematically moved across every possible position in the image and the probabilities of the disease were

recorded. The highest drop in the probability represents the region of interest that contributed the highest importance to the deep

learning algorithm (Figure 5A, see also Figure S5 for additional examples).

QUANTIFICATION AND STATISTICAL ANALYSIS

The 207,130 images collected were reduced to the 108,312 OCT images (from 4686 patients) and used for training the AI platform.

Another subset of 633 patients not in the training set was collected based on a sample size requirement of 583 patients to detect

sensitivity and specificity at 0.05 marginal error and 95% confidence. The test images (n = 1000) were used to evaluate model

and human expert performance. Receiver operating characteristics (ROC) curves plot the true positive rate (sensitivity) versus the

false positive rate (1 – specificity). ROC curves were generated using classification probabilities of urgent referral versus otherwise

and the true labels of each test image and the ROC function of the Python scikit-learn library. The area under the ROC curve is a

measure of performance and the true positive rate (TPR or sensitivity) at some chosen true negative rate (TNR or specificity) on

the ROC curve is the probability that the classifier will rank a randomly chosen ‘‘urgent referral’’ instance higher than a randomly

chosen normal or drusen instance. Accuracy was measured by dividing the number of correctly labeled images by the total number

of test images. Sensitivity and specificity were determined by dividing the total number of correctly labeled urgent referrals and the

total number of correctly labeled non-urgent referrals, respectively, by the total number of test images.

DATA AND SOFTWARE AVAILABILITY

All deep learning methods were implemented using either TensorFlow (https://www.tensorflow.org). ImageNet, a public database of

images, can be found at https://www.image-net.org. Dataset on high resolution JPEG OCT and chest X-ray images are deposited

into the public Mendeley database (https://doi.org/10.17632/rscbjbr9sj.3).
Cell 172, 1122–1131.e1–e2, February 22, 2018 e2
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Supplemental Figures

Figure S1. Plots Showing Binary Performance in the Training and Validation Datasets Using TensorBoard, Related to Figure 3
Comparisons were made for choroidal neovascularization (CNV) versus normal (A), diabetic macular edema (DME) versus normal (B), and drusen versus

normal (C). Plots were normalized with a smoothing factor of 0.6 in order to clearly visualize trends. The validation accuracy and loss shows better performance

since images with more noise and lower quality were also included in the training set to reduce overfitting and help generalization of the classifier. Training

dataset: orange. Validation dataset: blue.



Figure S2. Receiver Operating Characteristic Curves for Binary Classifiers, Related to Figure 4

The corresponding area under the ROC curve (AUROC) for the graphs are 100% for choroidal neovascularization (CNV) versus normal (A), 99.87% for diabetic

macular edema (DME) versus normal (B), and 99.96% for drusen versus normal (C). The straight vertical and horizontal lines in (A) and the nearly straight lines in

(B) and (C) demonstrate that the binary convolutional neural network models have a near perfect classification performance.



Figure S3. Plots Depicting the Positive and Negative Likelihood Ratios with Their Corresponding 95%Confidence Intervals Marked, Related
to Figure 4

(A) The positive likelihood ratio is defined as the true positive rate over the false positive rate, so that an increasing likelihood ratio greater than 1 indicates

increasing probability that the predicted result is associated with the disease.

(B) The negative likelihood ratio is defined as the false negative rate over the true negative rate, so that a decreasing likelihood ratio less than 1 indicates increasing

probability that the predicted result is associated with the absence of disease.

The confidence intervals show that the best trained model demonstrated statistically similar screening performance in when compared to human experts.



(legend on next page)



Figure S4. Proposed Penalties for Incorrect Labeling during Weighted Error Calculations and Confusion Matrix of Experts Grading OCT

Images, Related to Figure 4

(A) The penalties include an error score of 4 for ‘‘urgent referrals’’ scored as normal and an error score of 2 for ‘‘urgent referrals’’ scored as drusen. All other

incorrect answers carry an error score of 1.

(B) The results for each of the human experts is depicted here, comparing the true labels and the predicted labels for each individual grader.



Figure S5. Occlusion Maps of Diabetic Macular Edema, Choroidal Neovascularization, and Drusen, Related to Figure 5

(Top) Diabetic macular edema (DME), (middle) choroidal neovascularization (CNV), and (bottom), drusen. Additional examples of occlusion test images, illus-

trating how an occluding kernel was convolved across the input image to identify areas contributing to the algorithm’s determination of the diagnosis.



Figure S6. Illustrative Examples of Chest X-Rays in Patients with Pneumonia, Related to Figure 6

The normal chest X-ray (left panel) depicts clear lungs without any areas of abnormal opacification in the image. Bacterial pneumonia (middle) typically exhibits a

focal lobar consolidation, in this case in the right upper lobe (white arrows), whereas viral pneumonia (right) manifests with a more diffuse ‘‘interstitial’’ pattern in

both lungs.
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